Problem

Overview

* Goal: identify clouds in satellite images

* Motivation: removing (“masking out”) clouds important
for downstream analysis for satellite imagery.

* Task: image segmentation with classes including dense
clouds, cirrus clouds, shadows, water, snow, and land.

* Evaluation: per-pixel classification accuracy, CE loss,
qualitative analysis of output, classification speed.

Subtasks:
We consider several permutations of the problem definition.

* Given information: image segmentation using all 13
Sentienl-2 bands, or only using RGB.

* Output classes: we consider 2-class, 3-class, and 6-class
classification problems, defined as follows.

2 Classes CLOUD, CLEAR

3 Classes

DENSE, CIRRUS, CLEAR

3ol | DENSE, CIRRUS, SHADOW, WATER, SNOW, CLEAR

* 00 Sentinel-2 satellite images = 10,000 by 10,000 px. ea.

* Segmented into = 120,000 tiles of size 224 by 224 px.

* Sentinel-2 images have 13 spectral bands, rather than 3
(RGB). RGB frequencies range from .665pum to .490um,
while S2 bands range from 2.190pum to .443pm, with
more information (e.g. infrared, short-wave infrared).

* Satellite imagery is very different from “traditional”
imagery (top- down, spatial covariance, lack of central
focus, scale), making transfer learning or pretrained
classifiers less useful.

* Sentinel-2 ships with a proprietary cloud mask (below),
which provides noisy but useful training data.
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Baseline Methods

Previous Approaches:

* Previous approaches are decision trees and linear classifiers, emphasizing speed.
Pixel-Level Decision Tree

* A recreation of previous research by Hollstein et al.

* Extremely fast, but innacurate for problems

more advanced than the binary problem.

* Useful for a form of transfer learning:

we generate training data for CNN’s -
by applying decision trees, using the Sentinel-2 cloud mask as an extremely noisy label.
Pixel-Level MLP

* An expansion on the pixel-level classification using decision trees. Ultimately no more

accurate than decision trees, likely due to the same inability to take advantage of spatial
covariance, with significantly increased inference time.
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Methods

Fully Convolutional Networks Networks (Long et al.)

* A modification of the Alexnet (Krizhevsky et al)
* architecture which removes the fully connected layers in favor of fully convolutional
layers, and adds a singular deconvolution. (Below are architecture, loss, and accuracy)
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Deconvolutional Neural Networks (Noh et al.)
e Parallel convolutional and deconvolutional structure.

* Convolutional first half initialized using ILSVRC-pretrained VGG-16
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Results

Pixel-Level Decision Trees
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Fully Convolutional Networks Networks
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Deconvolutional Neural Networks (Noh et al.)

* We are unsuccessful in training deconvolutional neural networks. This is likely a
result of several factors. First, for the RGB-only task, the VGG-16 ConvNet 1s
pretrained on ILSVRC data, which does not parallel Sentinel-2 data. For the 13-
band task, training may simply require more computational resources.

Inference Speed and Accuracy

_ Inference Accuracy (F1 Score) Inference Speed

0.653 16 million pixels/second
Fully Conv. Networks 0.822 1 million pixels/second
0.516 40,000 pixels/second

Discussion and Future Work

* Pixel-level decision trees achieve visually satisfactory results and high numerical

accuracy for the binary problem, but fail on more difficult classes, such as shadows.

* Fully convolutional neural networks produce coarse output, but could be refined by
using a series of deconvolutional layers — likely the most viable next step.

* Deconvolutional networks have strong potential for this task, but can’t be pretrained
on ILSVRC data, which is significantly different from satellite imagery. Future work
might include training a DNN end-to-end on Sentinel-2 data.

* Satellite images are extremely large; processing time is key. Future work might include
application of SqueezeNet (Iandola et al.) architectures to Sentinel-2.




