
Meet Percy: The CS 221 Teaching Assistant Chatbot
SAHIL CHOPRA and RACHEL GIANFORTE and JOHN SHOLAR
Stanford University

Teaching assistants act as pillars of a college education, helping students
grapple with new and challenging topics each week. Many students interact
with their teaching assistants through online forums such as Piazza, where
they may ask for assistance outside the purview of daily or weekly Office
Hours. We propose and develop a T.A. chatbot to help answer Piazza
questions for this class, CS 221. Specifically, we categorize questions
into three types - ”Policy”, ”Assignment”, and ”Conceptual”. We scraped
Piazza questions and answers, from the current Fall 2016 offering of
CS 221, as well as previous offerings of CS 124, with permission from
Professors Percy Liang and Dan Jurafsky, respectively.

To summarize, our algorithmic approach entails the use of three
classifiers to determine a given question’s category. If the question is
classified as ”Policy”, we use regular expressions to match the policy
question to a specific subcategory and return an appropriate pre-written
answer from a representative set of solutions. If it is categorized as
”Assignment”, we return the closest Piazza answer according to cosine
similarity of one of several feature vectors (including tf-idf and others).
If the question is classified as ”Conceptual” we perform an intelligent
information retrieval from several academic sources (including Rus-
sel and Norvig’s Artificial Intelligence textbook), and return the most
appropriate paragraph, again according to cosine similarity of tf-idf vectors.

Our chatbot is able to differentiate ”Policy” questions with low precision
and high recall, ”Assignment” questions with high precision and high recall,
and ”Conceptual” questions with low precision and moderate recall. We
asked approximately 20 fellow students in CS 221 to evaluate the responses
of our chatbot to a total of 15 randomly sampled ”Policy”, ”Assignment”,
and ”Conceptual” questions. Ultimately, our chatbot performs exception-
ally well at answering ”Policy” questions, moderately well at answering
”Assignment” questions, and poorly at answering ”Conceptual” questions.

Additional Key Words and Phrases: Chatbot, Education, Question Answer-
ing, Information Retrieval

1. INTRODUCTION

This project was inspired by news stories regarding a Georgia
Tech computer science class that utilized a chatbot to respond to
Piazza posts for an entire semester [1]. We were curious about the
implementation but could not find any academic material on the
subject, so we became interested in designing our own TA chatbot
for CS 221.

Teaching assistants are crucial to guiding students through their
educational experience. TAs have a rich understanding of the
material that is being taught within their class, and as experts on
the course, they can help provide students with both conceptual
support and assignment-specific assistance.

Nowadays, most computer science classes at Stanford utilize
Piazza, an online forum where students can ask questions at any
time of day. With this ease of access, TAs are being inundated
with more questions than ever before. With our project, we hope

to alleviate some of this load by introducing our CS 221 TA
chatbot, Percy. In an ideal world, our chatbot might not service a
student directly but instead provide a potential answer that would
automatically be posted to Piazza or that would go through a
TA-approval process.

2. OVERVIEW OF APPROACH

A quick scan of Piazza posts makes it evident that similar questions
are often asked multiple times by different people. Additionally,
many Piazza questions pertain to predefined course policy. Uti-
lizing these inefficiencies in questions, we have designed and
implemented a TA chatbot to answer Piazza questions.

2.1 Designing the Chatbot

A student can ask literally anything on Piazza, so we aimed to
broadly delineate the different types of questions. This way the
chatbot could deferentially construct answers, according to the
type of question being asked. Leveraging our prior experience with
the platform, we devised three primary categories for the online
questions - ”Policy”, ”Assignment”, and ”Conceptual”.

Fig. 1. Chatbot Design

Below we list a few examples of these three categories:

(1) Policy Questions - The chatbot should be able to answer ques-
tions regarding class policy, e.g. office hour timings, assign-
ment due dates, etc. Example: ”Where are office hours lo-
cated?”

(2) Assignment Questions - The chatbot should be able to answer
assignment specific questions. Example: ”I am receiving the
following output probabilities from my Bayesian network? ...
What could my bug be?”

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1, Publication date: December 2016.



2 • schopra8, rachelg4, jmsholar

(3) Conceptual Questions - The chatbot should be able to an-
swer conceptual questions pertaining to artificial intelligence.
Example: ”What is the difference between state-based and
variable-based models?”

With this categorization of questions, our chatbot consists of
three steps. First classifying the type of question, second gener-
ating an answer, and third providing an answer to the user if the
prescribed solution meets a defined confidence threshold (Figure
1).

2.2 Data

We scraped Piazza question, answers, tags, followups, and notes
from the Autumn 2016 offering of CS 221 as well as the 2013 -
2016 offerings of CS 124, with the permission of Professors Percy
Liang and Dan Jurafsky, respectively. We then cleaned this data,
by removing errant HTML and LaTeX symbols. Additionally,
we procured a PDF copy of Artificial Intelligence: A Modern
Approach by Stuart Russel and Peter Norvig. We converted this
pdf into a text file and combed the manuscript, removing artifacts
left from the conversion.

Ultimately, we trained our chatbot on both our dataset of
approximately 1500 cleaned (question, answer) tuples from the
2016 offering of CS 221 and our the cleaned copy of Artificial
Intelligence: A Modern Approach. The Piazza data was leveraged
to classify questions and answer questions from the ”Assignment”
category. The textbook was utilized to answer questions from the
”Conceptual” category.

Please note that our data set for CS 221 only extends through
November 6, 2016 as we did not have sufficient time to scrape and
clean additional data.

3. QUESTION CLASSIFICATION

3.1 Baseline

For our baseline, we attempted using a Linear SVM along with
several simple features upon a 80-20 split of the data (Figures 2, 3,
and 4). We leveraged simple features such as unigram, bigram, and
trigram counts.

Additionally, we attempted training the SVM upon TF-IDF vec-
tor representations of the given questions. Given a set of input train-
ing questions, we computed a TF-IDF value for each of the tokens
in the training set. TF-IDF is defined as follows:

tf -idf = tf ∗ log N

dft

tf = Term frequency across corpus

N = Number of documents across corpus

dft = Number of documnts containing the term, across corpus

At first glance, it seems like the baselines are performing de-
cently well across ”Policy”, ”Assignment”, and ”Conceptual” clas-
sification with maximum F-Scores of 0.87, 0.73, and 0.93, respec-
tively. Upon further analysis it becomes clear that these high F-
Scores are artificial. The SVM is acting as a majority algorithm and

Fig. 2. Question Classification Baseline - Policy Question
- Precision Recall F-Score

Unigram Count 0.67 0.82 0.74
Bigram Count 0.53 0.73 0.61
Trigram Count 0.83 0.91 0.87

Uni/Bi/Trigrams Count 0.67 0.82 0.74
Unigrams TF-IDF 0.83 0.91 0.87

Bigrams TF-IDF 0.60 0.77 0.67
Trigrams TF-IDF 0.75 0.86 0.80

Fig. 3. Question Classification Baseline - Assignment Question
- Precision Recall F-Score

Unigram Count 0.66 0.81 0.73
Bigram Count 0.51 0.72 0.60
Trigram Count 0.56 0.75 0.64

Uni/Bi/Trigrams Count 0.51 0.72 0.60
Unigrams TF-IDF 0.60 0.78 0.68
Bigrams TF-IDF 0.51 0.72 0.60
Trigrams TF-IDF 0.57 0.75 0.65

Fig. 4. Question Classification Baseline - Conceptual Question
- Precision Recall F-Score

Unigram Count 0.91 0.95 0.93
Bigram Count 0.90 0.95 0.92
Trigram Count 0.88 0.94 0.91

Uni/Bi/Trigrams Count 0.91 0.95 0.93
Unigrams TF-IDF 0.90 0.95 0.92
Bigrams TF-IDF 0.87 0.93 0.90
Trigrams TF-IDF 0.82 0.91 0.86

classifying every inputted question as ”Assignment”. Since the data
is so heavily skewed towards ”Assignment” questions, this results
in a decent F-Score – even though this not a classifier we would
actually want for a chatbot.

3.2 Oracle

For comparison, our oracle was an SVM classifier that utilized
Piazza metadata, which includes question tags such as ”Other”,
”Hw1”, etc. Most of the tags directly map to one of our three
categories, so we believed that this additional information would
help provide a much stronger signal as to the different question
types.

Examining the results (Figure 5). the F-Scores are higher than
our baseline at 0.92, 0.91, and 0.93 for ”Policy”, ”Assignment”,
and ”Conceptual” respectively. Digging deeper into these numbers,
we found that the metadata tags was able to differentiate ”Policy”
from ”NOT Policy”, unlike our baseline classifier, though with low
precision (0.20). The metadata classifier performed exceptionally
well at discerning ”Assignment” questions from those that were

Fig. 5. Question Classification Oracle - Piazza Metadata
- Precision Recall F-Score

Policy Questions 0.90 0.95 0.92
Assignment Questions 0.79 0.80 0.77
Conceptual Questions 0.91 0.95 0.93

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1, Publication date: December 2016.



CS 221 T.A. Chatbot • 3

”NOT Assignment”, though with low recall for ”NOT Assignment”
(0.37). Finally, the metadata tags did not help in differentiating the
”Conceptual” questions from those that were ”NOT Conceptual”,
with the SVM again acting as a majority algorithm. This is prob-
ably due to the presence of vary few ”Conceptual” questions on
Piazza and the fact that there is no single ”Conceptual” category
on Piazza. Rather, these questions are often tagged as ”Other” - a
category which also contains miscellaneous questions that outside
the purview our ”Conceptual” class.

3.3 Advanced Features

Distributional word vector representations have been gaining
tremendous traction over the last few years - first with Google’s
word2Vec [2] and Stanford’s GLoVe [3]. word2vec develops word
vector representations to that are intended to highlight contextual
similarities - grouping words that may not be associated by defini-
tion, e.g. ”Barcelona” and ”Spain”. Meanwhile GLoVe vectors try
to capture both local context and larger, global meaning. The goal
of these word vector representations is to illuminate similarities
to other words and phrases across a large corpora so that one can
infer words’ definitions and relationships.

For our question classification task, we attempted leveraging
GLoVE vectors that had been pre-trained on the combination of
the 2014 Wikipedia dump and the Gigaword-5 dataset. For each
training and test sample, we iterated through the words of the
question or answer, removing stop words and summing together
the word vectors to devise a ”one-hot-vector” representation of the
entire text sample. Please note that, we only ran the Random Forest
predictor on this feature function because the GLoVe representa-
tions are not guaranteed to be non-negative, and Multinomial Naive
Bayes predictor assumes a multinomial gaussian distribution.

In addition to our experiments with GLoVe vectors, we at-
tempted leveraging the regular expressions we wrote for determin-
ing the topic of a ”Policy” question, e.g. office hours, as binary
features to predict whether a question was of category ”Policy”.

3.4 Results

Improving on the baseline, we tried to correct for the tremendous
skew towards questions of category ”Assignment”. Examining our
CS 221 and CS 124 data, we found that roughly 70% of questions
were ”Assignment” focused, while 20% were ”Policy” related,
and 10% pertained to ”Conceptual” ideas from the courses. To
counter this intrinsic bias, we tried using a Multinomial Naive
Bayes predictor (Figure 6, 7, 8) with the aforementioned priors
and a Random Forest predictor (Figure 9, 10, 11).

We found that both Multinomial Naive Bayes and Random
Forest predictors did approximately the same on the test set.
Additionally, both improved significantly on ”Assignment” and
”Policy” question classification, in that they maintained relatively
high F-scores without acting like majority algorithms. Though the
F-Scores for ”Conceptual” classification seem very high (0.96)
the classifiers are just acting as majority algorithms, which once
again is not helpful within the context of classifying questions for
a chatbot.

Examining performance over the various features, it seems
like unigrams was the best feature for delineating question types.
This simplistic feature nearly universally outperformed the other
feature functions across both predictors. Additionally, our attempt

to leverage GLoVe vectors was somewhat unsuccessful, with the
GLoVe features consistently scored lower than unigrams across all
three classification tasks.

Fig. 6. Question Classification Multinomial Naive Bayes - Policy Ques-
tion

- Precision Recall F-Score
Unigram Count 0.92 0.86 0.88
Bigram Count 0.82 0.68 0.72
Trigram Count 0.81 0.41 0.36

Uni/Bi/Trigrams Count 0.95 0.91 0.92
Unigrams TF-IDF 0.82 0.45 0.43
Bigrams TF-IDF 0.88 0.18 0.12
Trigrams TF-IDF 0.05 0.23 0.08
Trigrams TF-IDF 0.05 0.23 0.08

Regexes .01 .09 .02
Oracle 0.83 0.68 0.68

Fig. 7. Question Classification Multinomial Naive Bayes - Assignment
Question

- Precision Recall F-Score
Unigram Count 0.81 0.80 0.81

Bigram Count 0.78 0.79 0.78
Trigram Count 0.69 0.72 0.70

Uni/Bi/Trigrams Count 0.85 0.84 0.84
Unigrams TF-IDF 0.82 0.82 0.79
Bigrams TF-IDF 0.72 0.73 0.68
Trigrams TF-IDF 0.67 0.71 0.80

Oracle 0.86 0.85 0.83

Fig. 8. Question Classification Multinomial Naive Bayes - Conceptual
Question

- Precision Recall F-Score
Unigram Count 0.92 0.92 0.92

Bigram Count 0.90 0.89 0.89
Trigram Count 0.85 0.87 0.86

Uni/Bi/Trigrams Count 0.92 0.88 0.90
Unigrams TF-IDF 0.87 0.93 0.90
Bigrams TF-IDF 0.87 0.93 0.90
Trigrams TF-IDF 0.86 0.93 0.89

Oracle 0.90 0.95 0.92

4. QUESTION ANSWERING

Once the chatbot has determined that the question belongs to one
or more categories, it then generates a response specific to the type
of question. Here we describe the three different methodologies for
answering ”Policy”, ”Assignment”, and ”Conceptual” questions.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1, Publication date: December 2016.



4 • schopra8, rachelg4, jmsholar

Fig. 9. Question Classification Random Forest - Policy Question
- Precision Recall F-Score

Unigram Count 0.86 0.82 0.80
Bigram Count 0.88 0.86 0.84

Trigram Count 0.97 0.95 0.96
Uni/Bi/Trigrams Count 0.75 0.86 0.80

Unigrams TF-IDF 0.91 0.91 0.91
Bigrams TF-IDF 0.68 0.73 0.67
Trigrams TF-IDF 0.75 0.86 0.80
Trigrams TF-IDF 0.05 0.23 0.08

Regexes 0.60 .77 .67
GLoVe 50D 0.67 0.82 0.74

GLoVe 100D 0.67 0.82 0.74
GLoVe 300D 0.66 0.77 0.71

Oracle 0.96 0.95 0.95

Fig. 10. Question Classification Random Forest - Assignment Question
- Precision Recall F-Score

Unigram Count 0.79 0.80 0.77
Bigram Count 0.77 0.78 0.77
Trigram Count 0.69 0.72 0.70

Uni/Bi/Trigrams Count 0.78 0.79 0.76
Unigrams TF-IDF 0.78 0.78 0.75
Bigrams TF-IDF 0.70 0.73 0.70
Trigrams TF-IDF 0.63 0.68 0.64

GLoVe 50D 0.62 0.72 0.64
GLoVe 100D 0.67 0.71 0.64
GLoVe 300D 0.69 0.71 0.64

Oracle 0.84 0.83 0.80

Fig. 11. Question Classification Random Forest - Conceptual Question
- Precision Recall F-Score

Unigram Count 0.95 0.96 0.96
Bigram Count 0.90 0.93 0.921
Trigram Count 0.89 0.91 0.90

Uni/Bi/Trigrams Count 0.92 0.94 0.92
Unigrams TF-IDF 0.89 0.92 0.88
Bigrams TF-IDF 0.90 0.92 0.89
Trigrams TF-IDF 0.89 0.92 0.90

GLoVe 50D 0.91 0.93 0.91
GLoVe 100D 0.96 0.99 0.97
GLoVe 300D 0.92 0.94 0.93

4.1 Policy Questions

To respond to a policy question, we extend the approach described
in ”Policy Question Classification”. During the classification stage,
a question is evaluated against a series of regular expressions and
placed into one or more policy question subcategories. For any sub-
category that a question is classified into, a pre-written answer is
selected from a suite of responses. To facilitate fluid user interac-
tion and eliminate a feeling that Percy simply gives ”canned an-
swers”, the chatbot has multiple, similar responses for each of the
categories of class specific questions. If a question is asked multiple
times, the chatbot is able to return variations of the answer so that it
does not seem too repetitive. For examples, if a question is placed
under the ”PRACTICE EXAMS” subcategory, we might select the
following response.

”Past year exams and solutions are listed on the CS 221 website.”

Though this method is very straightforward, it works decently
well for the fifteen topics the bot must address in regards to class
specific questions. If a question matches multiple subcategories,
we provide a relevant answer from each matching subcategory.

To allow the system to be more helpful over the course of a
quarter, we implemented a method to allow real TA’s to input
new information into the knowledge base when things change.
For example, a TA may notify students of a time change in
office hours. If a student then asks a question related to the new
information, both the appropriate pre-seeded answer and the new
piece of information will be returned. This new information is also
categorized and returned based on regular expression matching.

4.2 Assignment Questions

”Assignment” questions proved a significant challenge as these are
often very detailed and specific. There is no way for a chatbot to
generate an answer to questions about why a snippet of code is
broken, so questions of this nature must be left to human teaching
assistants. However, some questions pertain to the same common
bug and are asked multiple times. Our bot’s goal is to be able to
respond to these repeated questions, leaving human TA’s free to
answer new questions.

We began by using cosine distance among tf-idf vectors com-
puted across the training set and test question to return an answer
from our existing knowledge base. The algorithm reads in all the
questions from Piazza and calculates a tf-idf matrix across the
document set. When a new question was posed, the bot creates a
vector consisting of each word’s tf-idf score that was computed
during training. It then iterates through all the questions and finds
the question that minimizes the cosine distance and returns the
answer of that most similar question. We tested out algorithm both
maximizing the dot product of the tf-idf vectors and minimizing
the cosine distance between the vectors, and found that both
performed similarly, often returning the same answer.

Ultimately, the chatbot could not reliably find the best answer as
the top answer; however, it was often among the top few closest
answers. To address this problem the chatbot in practice should
return the top three questions produced by either algorithm. This
greatly improves the overall helpfulness of the chatbot’s answers,
since the probability that the best answer is in the top three is much
higher than the probability that it is the top answer.

We curb our chatbot’s impulse to answer questions, even when
it does not have a similar question in it’s knowledge base and
has no possible clue as to the true answer. To accomplish this we
implemented a maximum threshold for the cosine distance such
that if the distance between a new question and it’s closest Piazza
question is above the threshold, the chatbot returns a response akin
to ”I don’t know”. This method fits with our goal of answering
repetitive questions rather than trying to generate answers.

4.3 Conceptual Questions

Conceptual questions are much more open-ended than class spe-
cific questions, and so we decided to use a much broader approach.

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1, Publication date: December 2016.



CS 221 T.A. Chatbot • 5

To respond to conceptual questions, we implemented information
retrieval on unstructured documents as discussed in the paper by
Yan, Zhao, et al[4]. Their method includes retrieving multiple
answers and then ranking those answers according to tf-idf,
surrounding context, chapter, topic, etc. Thus, we approached this
an information retrieval task over a textbook - specifically Russell
and Norvig’s Artificial Intelligence: A Modern Approach.

Originally, our chatbot compared every line of the textbook
with the question, but this ran slowly, taking up to 90 seconds, and
sometimes returned unrelated material. Now we break the book
up into sections, find the most relevant section, and then find the
most relevant line within that section. In our chatbot’s booting
phase it reads the textbook in, splitting it by its section divisions. It
then calculates a tf-idf matrix where each line represents a section
of the book, and the idf is based on the entire textbook. It also
calculates a separate tf-idf matrix for each section where each
line of the matrix represent a line in that section and the idf is
based on that section. Whenever a conceptual question is asked,
the chatbot calculates the tf-idf of that question based on the idf
of the textbook. It then calculates the cosine distance between the
question and every section in the textbook. Once it has found the
most similar section, it recalculates the question’s tf-idf vector
based on the idf of the most relevant section, and then finds the
closest line in the section using cosine similarity. The chat bot
returns that line and its surrounding paragraph, since conceptual
concepts usually take more than a single sentence to explain.

Similarly to the assignment questions, we found that our answers
were improved by returning the three closest paragraphs, rather
than just the best.

4.4 Results

Evaluation of our results for the question classification stage was
fairly straightforward, in that metrics for classification problems
(e.g. precision, recall, f1-score) are well-established, and are
recognized and understood by the broader research community.
In contrast, evaluation of the question-answering is an inherently
hard problem with no established evaluation metrics. Given a
question, our methodology yields an answer. Our evaluation
metric must then answer the question: “to what extent does this
response constitute a ‘good’ answer to this question?”. Setting
aside the myriad interpretations of what might constitute a “good”
answer (e.g. balance between succinctness and detail, etc...), this
evaluation metric requires us to develop a meaningful and nuanced
interpretation of both the question and answer and determine in
what ways they might be related - an open problem in the artificial
intelligence community. Concordantly, we were forced to pursue
alternate strategies in the evaluation of our responses to questions.

Initially, we experimented with several automated evaluation
metrics for string similarity, including most prominently BLEU
score, and cosine similarity between TF-IDF vectors for question-
answer pairs. However, as was expected, these methods only allow
for the matching of syntactically similar question-answer pairings,
not necessarily those with similar intentions.

After these and other initial attempts at evaluation for our
question-answering stage, we turned to human evaluation - a tech-
nique which, while not scalable, provided an accurate, intelligent
evaluation metric. For human evaluation, we curated a set of fifteen

question-answer pairings (five conceptual, five policy-based, and
five assignment-based) which we felt were representative of the
overall performance of the chatbot. Twenty-two students were
asked to rate the quality of each answer as a response to the given
question, on a scale from one to five. We present in figure 12 the
mean ratings for each question, as well as the standard deviation of
the ratings for each question, to illustrate the presence or absence
of contention over the quality of an answer (for brevity, we have
excluded the actual question-answer pairings from the table; these
question-answer pairing can be found in the appendix).

Fig. 12. Question Answering - Human Evaluation
Question Category Mean Rating Standard Dev.

1 Policy 4.18 0.96
2 Policy 4.73 0.55
3 Policy 3.95 1.25
4 Policy 3.55 1.44
5 Policy 2.77 1.72
6 Assignment 4.05 1.00
7 Assignment 4.18 0.85
8 Assignment 2.50 1.22
9 Assignment 1.95 1.36
10 Assignment 3.73 1.24
11 Conceptual 2.00 1.27
12 Conceptual 1.32 0.89
13 Conceptual 2.59 1.10
14 Conceptual 2.14 1.25
15 Conceptual 2.27 1.28

5. ANALYSIS

5.1 Analysis: Question Classification

Our primary conclusion the results of the question classification
sub-problem is that this is inherently a data problem. With
our limited dataset of slightly more than one thousand past
question-answer pairings, coupled with standard classification
algorithms (e.g. SVM, Naive Bayes, Random Forest), we observed
moderately successful classification rates, with significant room
for improvement.

Interestingly, unigram features proved to be the best dilineator
of question types, but this may be a result of the small data-set and
high word-word variance across Piazza questions. Additionally,
it was initially surprising the GLoVe features failed to perform at
least as well as unigrams. However, upon further consideration it
makes sense that our chosen GloVe representations may not be
suitable for this classification task. The Wikipedia/Gigaword-5
dataecset that the GloVe vectors were trained upon may not
be as applicable to our Piazza question classification dataset,
since the questions deal with very assignment-specific terms.
GLoVe features may have proved more valuable in differentiating
”Conceptual” questions from the rest if they had been trained on
a corpus of artificial intelligence texts, as these questions feature
a wide array of terminology that is both diverse and exclusive to
these types of questions.

Furthermore, it’s likely that the results of our question classifi-
cation phase could be improved significantly via the introduction
of more data from previous iterations of the course (this data was

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1, Publication date: December 2016.



6 • schopra8, rachelg4, jmsholar

not included originally due to concerns over protecting student pri-
vacy under FERPA). Another potential improvement in this ap-
proach would be to incorporate data from other classes for ques-
tion classification purposes only (and not for question answering
purposes). It’s possible that question categories in other classes are
similar enough to question categories for CS 221, and could simply
be folded into our existing dataset. We did obtain data for CS 124
(Introduction to Natural Language Processing) courtesy of Profes-
sor Dan Jurafsky, but ultimately were not able to incorporate it - an
omission which paves the path for several obvious next steps.

5.2 Analysis: Question Answering

5.2.1 Analysis: Policy Questions. Policy-based questions
were answered simply and effectively using a series of regular
expression pattern matches to classify a question as belonging to
one of several dozen different categories. Some might be quick to
criticize this as an “unintelligent” approach, and indeed by any
definition it certainly does not incorporate artificial intelligence.
However, we, the authors cite this particular design choice as
an example of the prudent application of artificial intelligence
techniques. The number of different topics which fall under the
umbrella of “policy questions” is small enough to be completely
enumerated by a small team of people familiar with the course, and
is unlikely to grow proportionally with the size of this course. Ad-
ditionally, these questions have strict, predefined answers, which
may change with time but do not change rapidly. Thus, it seems
most appropriate to use a small, predefined set of answers to field
these questions, and in practice this approach proved extremely
effective. We cite as evidence of this point, our mean ratings for
questions one through five in Figure 12. Question-Answer pairs
1 and 2 were consistently rated highly, while Question-Answer
pairs 3, 4, and 5 were rated highly in general, with high variance
in responses. With further refinement of techniques employed
to answer policy questions, we postulate that these could be
automatically answered in a completely satisfactory manner.

5.2.2 Analysis: Assignment Questions. Providing answers to
questions focused on specific assignments, problem sets, and other
course materials comprised the bulk of our research. Analysis
of the ratings provided for questions six through ten in Figure
12 reveals that some assignment-based question-answer pairings
were received quite well (notably questions six, seven, and ten),
while others exhibited room for improvement, or high variance in
responses, indicated disagreement among survey participants.

Our approach for question-answer pairing was inspired by that
of Dror, Gideon, et al. [5], who pursued a similar approach when
they attempted to use past question-answer pairings from Yahoo
Answers to respond to new questions, with some success. How-
ever, Dror and Gideon had access to a dataset of approximately one
million past question-answer pairings, while our team was working
with a dataset of only approximately one thousand pairings. This
proved to be one of our primary limitations in responding to
assignment-based questions, but, luckily, will also be one of the
easiest obstacles to conquer in future iterations of this research.
This research was inherently limited in scope by the fact that it
was conducted over the course of two months for class project, and
given a larger project scope, it is likely that considerably more data
could be acquired. With more data, the likelihood that any new
question can be answered using a past question-answer pairing

increases proportionally, and bolsters the strength of this approach.

One caveat to the strength of the current question-answering
method for assignment-based questions is the fact that assignments
for many classes will exhibit subtle changes year over year, shifting
with instructor preferences and the unique and unexpected demands
of any given academic quarter. This is particularly true of relatively
cutting-edge classes such as CS 221, where advances in academia
may be relevant to material taught in the class. The addition of a dis-
cretionary layer to our current question-answering model would al-
low human teaching assistants to evaluate any answer proposed by
the chatbot for validity before releasing it to students. This would
certainly prevent the chatbot from releasing any erroneous infor-
mation, but the overhead of human error-checking could be almost
as high as the overhead of human question-answering in the first
place. In the ideal case, the chatbot will be able to release informa-
tion without human approval, though such a release will require a
high threshold of confidence, which we are unable to achieve for
most questions as of this writing.

5.2.3 Analysis: Conceptual Questions. Conceptual questions
proved much more difficult to answer, as is evidenced by our
results for this category. We note that questions eleven through fif-
teen in Figure 12 received relatively low ratings, with low variance
in responses. However, the goal of this research was to use arti-
ficial intelligence techniques to answer repetitive or unnecessary
questions, to ensure that teaching assistants could spend more time
helping students with difficult, conceptual topics. Currently, the
chatbot’s method for responding to conceptual questions consists
of an intelligent information retrieval approach, designed to guide
students to academic resources that may help them arrive at an
answer on their own. However, often students struggling with
conceptual topics seek the active dialogue and discussion of a topic
that only a human teaching assistant can provide. Thus, the fact
that we cannot yet answer difficult, conceptual questions is not so
much a defeat as it is a recognition of the fact that some topics (for
now) can and should be left to human teaching assistants.

6. CONCLUSIONS

Though certainly far from perfect, our chatbot produces viable
results in some contexts, and provides a solid foundation for future
research in this direction. Our original purpose was to handle
repetitive questions on Piazza. Given that mission, the chatbot
performs reasonably well. If a similar question has already been
asked, the chatbot is generally able to retrieve it. If no similar
question has been asked the bot is able to recognize that and
respond, ”I don’t know.” It also performs well on policy questions,
which is the other type of question that consumes the time of
teaching assistants, but does not necessarily require their skills.
The limited number of categories makes it easy to determine
exactly what a policy question is asking and return the relevant
information.

The main issue we faced was responding to conceptual ques-
tions. When we began this project we recognized that this was
an inherently hard problem, and it is one we believe still requires
a human teaching assistant. The process of understanding a
concept, understanding a student’s question, and then synthesizing
the appropriate information to directly respond to the student’s
question is one that even humans struggle with. We did not expect
to be successful on this part of the project, and despite our attempts

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1, Publication date: December 2016.



CS 221 T.A. Chatbot • 7

our expectations of the difficulty of the problem were validated.

Ultimately, our chatbot strove to act question-answering vehi-
cle, lacking a purely conversational mechanism. Given more time
it would be fascinating to develop a knowledge base of facts that
the chatbot could draw on to generate answers. But much like con-
ceptual questions, this is a much harder problem than we could take
on given the limited time frame.

7. FUTURE WORK

Given that our research was conducted over the course of only two
months, several areas stand out as candidates for the continuation
and extension of this study.

First, gathering more data from past courses would allow us to
improve our classification of questions simply by having more data
to train on. More data would also improve our chatbot’s ability
to retrieve answers to similar questions by increasing the number
of question and answer pairs we can match on. Having past data
would also allow us to begin handling issues of weighting past
quarters’ answers against current answers, and ensuring that the
chatbot does not return information that is out of date.

Additionally, though we began using a GLoVe vectors as
features for question classification, they performed worse than
simple unigram features. As a next step we are considering training
the GLoVe vectors on materials that are reflective of academic
literature surrounding artificial intelligence, rather than just generic
materials. This may better capture relationships between words in
our specific context.

A possible improvement for assignment questions would be to
utilize GLoVe vector cosine similarity for finding questions that
have already been asked rather than tf-idf cosine similarity. This
may better account for differences in wording and more effectively
compare the the similarity of the key points of the questions.

To improve policy question answering, we would expand the
chatbot’s set of regular expressions. Though we believe that regular
expressions are the best method for answering policy questions, the
current set of regular expressions was designed by hand, but these
may not entirely generalize. Thus, we need an unsupervised way
of finding potentially relevant regular expressions. One candidate
is the DIPRE method, first developed by Sergey Brin[3].

REFERENCES

[1] Maderer, Jason. Artificial Intelligence Course Creates AI
Teaching Assistant. 9 May 2016.

[2] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., & Dean,
J. (2013). Distributed representations of words and phrases and
their compositionality. Advances in neural information processing
systems, 3111-3119.

[3] Pennington, J., Socher, R., & Manning, C. (2014). Glove:
Global Vectors for Word Representation. Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing
(EMNLP). doi:10.3115/v1/d14-1162.

[4] Yan, Zhao, et al. ”DocChat: An Information Retrieval
Approach for Chatbot Engines Using Unstructured Documents.”

[5] Dror, Gideon, et al. ”Learning from the Past: Answering
New Questions with Past Answers”. Proceedings of WWW. 2012.

[6] Brin, Sergey. ”Extracting patterns and relations from the
world wide web.” International Workshop on The World Wide
Web and Databases. Springer Berlin Heidelberg, 1998.

8. APPENDIX

8.1 User Survey Questions

The questions provided in the user survey are as follows. Users
were asked to rate the quality of each answer from one to five as a
response to its respective question.

(1) How do sign up for an alternate exam?
Answer: Fill out the form listed on the website, if you want to
need an accommodation to take an alternative exam, by Nov. 1

(2) Is the code from lecture posted?
Answer: Slides are posted on the website and lecture videos
can be found at https://mvideox.stanford.edu/Course/787.
Code can be found at http://web.stanford.edu/class/cs221/live/

(3) Are there practice solutions?
Answer: Practice exams can be found on the CS 221 website.

(4) Do I need an exam monitor?
Answer: SCPD students can the take exam either on campus or
at a designated test center. If you choose to take the exam re-
motely, please schedule the exam for a 3-hour period between
Monday, Nov. 28 at 9 a.m. and Tuesday, Nov. 29 at 9 p.m. (Pa-
cific Time).

(5) Are we allowed to import from the python library for our as-
signments?
Answer: Try running your code on corn. If it works and passes
grader.py you should be good

(6) For 4a pacman. I’m having issues with pacman refusing to eat
the last piece of food. He will wander around right next to it
but never eat it.
Answer 1: Maybe in your settings, the value when paceman is
around the food is larger than the value after the pacman eat
it. Maybe you put too much weight on the food, which is even
larger than the end game bonus.It sounds like your evaluation
function returns a larger value when it is sitting right next to
the food capsule, than what it would get by the score increase
by finishing the game.

(7) For problem 0b It seems like parts 2 and 3 will have the same
number of calls, because AC-3 must still be called for every as-
signment of x the way it is currently written, but the question
also asks us to explain why AC-3 reduces the number of calls.
What am I missing?
Answer: AC-3 will (very likely) shrink the domain for the re-
maining unassigned variables. Thus when we consider the next
variable, the number of times we call backtrack() is determined
by how many values we can assign to it, which should be lower
with AC-3.

(8) For blackjack, I’m confused on the information given to use.
How do we know the values of the cards that correlate the the
counts in the deck we are passed?
Answer: It’s specific to this problem. Basically, you first learn
some policy, then compare it to another policy. However, if you

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1, Publication date: December 2016.



8 • schopra8, rachelg4, jmsholar

call getAction() to compare the policy, and your exploration
prob is not 0, with probability epsilon you will get a random
policy.

(9) I’m confused about how we are supposed to set up the feature
keys. It says that each feature key is (state, action), but does
this mean a single feature contains all the (state, action) pairs
mapped to something or is each (state, action) pair a separate
feature?
Answer: No, the next state should be (6, None, None) with 0
reward.

(10) What happens if the reward is not immediately apparent to
Monte Carlo? For example, in chess or go, nothing really mat-
ter until the final move, how does reward account for that?
Answer: I think the feedback backpropagates for a game like
chess where the the only (and big) reward comes from moving
a state to the terminal state (checkmate). The Qopt and Vopt
recurrence would feed into each other such that you can infer
rewards all the way back up to the start of the game.

(11) What does Q-learning do in a terminal state?
Answer: As in (a), but with the terminal state at (5,5) The ac-
tions are deterministic moves in the four directions In each
case, compare the results using three-dimensional plots For
each environment, propose additional features (besides x and
y) that would improve the approximation and show the results
21

(12) Why would people use policy iteration over value iteration?
Answer: A 10 10 world with a single +1 terminal state at
(10,10)
As in (a), but add a 1 terminal state at (10,1)
As in (b), but add obstacles in 10 randomly selected squares
As in (b), but place a wall stretching from (5,2) to (5,9)
As in (a), but with the terminal state at (5,5)

(13) Beam Search w/ different K selection Are there any varia-
tions on pruning other than picking top k elements with high-
est weights? For example, using some kind of random distri-
bution, or picking some elements in separate intervals. Would
that generate better results?
Answer: Just one It begins with k randomly generated states
At each step, all the successors of all k states are generated If
any one is a goal, the algorithm halts Otherwise, it selects the
k best successors from the complete list and repeats

(14) Motivation of SARSA I do not understand the motivation be-
hind SARSA and other bootstrapping methods in the context
of model-free learning. Why is it important to obtain feedback
quickly if it is not used to modify the policy online?
Answer: For this reason, Q-learning is called a model-free
method As with utilities, we can write a constraint equation
that must hold at equilibrium when the Q-values are correct.
As in the ADP learning agent, we can use this equation directly
as an update equation for an iteration process that calculates
exact Q-values, given an estimated model This does, however,
require that a model also be learned, because the equation uses
P (s# — s, a)

(15) Why do we care if hinge loss puts upper bound on 0-1 loss?
Why is it an important feature of the hinge loss that it places an
upper bound on the 0-1 loss? Couldn’t we multiply the expres-
sion for the hinge loss by .1 arbitrarily (so it does not upper
bound the 0-1 loss) and get the same results by using it?
Answer: Is it possible to find an upper bound on the value of
C before we have looked at all its children? (Recall that this
is what alpha,beta needs in order to prune a node and its sub-
tree). At first sight, it might seem impossible because the value

of C is the average of its children’s values, and in order to
compute the average of a set of numbers, we must look at all
the numbers But if we put bounds on the possible values of
the utility function, then we can arrive at bounds for the av-
erage without looking at every number For example, say that
all utility values are between 2 and +2; then the value of leaf
nodes is bounded, and in turn we can place an upper bound on
the value of a chance node without looking at all its children
An alternative is to do Monte Carlo simulation to evaluate a
position

Received September 2008; accepted March 2009

ACM Transactions on Graphics, Vol. 1, No. 1, Article 1, Publication date: December 2016.


